Author Archives: admin

SciPy 2017 Conference to Showcase Leading Edge Developments in Scientific Computing with Python

Renowned scientists, engineers and researchers from around the world to gather July 10-16, 2017 in Austin, TX to share and collaborate to advance scientific computing tool


AUSTIN, TX – June 6, 2017 –
Enthought, as Institutional Sponsor, today announced the SciPy 2017 Conference will be held July 10-16, 2017 in Austin, Texas. At this 16th annual installment of the conference, scientists, engineers, data scientists and researchers will participate in tutorials, talks and developer sprints designed to foster the continued rapid growth of the scientific Python ecosystem. This year’s attendees hail from over 25 countries and represent academia, government, national research laboratories, and industries such as aerospace, biotechnology, finance, oil and gas and more.

“Since 2001, the SciPy Conference has been a highly anticipated annual event for the scientific and analytic computing community,” states Dr. Eric Jones, CEO at Enthought and SciPy Conference co-founder. “Over the last 16 years we’ve witnessed Python emerge as the de facto open source programming language for science, engineering and analytics with widespread adoption in research and industry. The powerful tools and libraries the SciPy community has developed are used by millions of people to advance scientific inquest and innovation every day.”

Special topical themes for this year’s conference are “Artificial Intelligence and Machine Learning Applications” and the “Scientific Python (SciPy) Tool Stack.” Keynote speakers include:

  • Kathryn Huff, Assistant Professor in the Department of Nuclear, Plasma, and Radiological Engineering at the University of Illinois at Urbana-Champaign  
  • Sean Gulick, Research Professor at the Institute for Geophysics at the University of Texas at Austin
  • Gaël Varoquaux, faculty researcher in the Neurospin brain research institute at INRIA (French Institute for Research in Computer Science and Automation)

In addition to the special conference themes, there will also be over 100 talk and poster paper speakers/presenters covering eight mini-symposia tracks including: Astronomy; Biology, Biophysics, and Biostatistics; Computational Science and Numerical Techniques; Data Science; Earth, Ocean, and Geo Sciences; Materials Science and Engineering; Neuroscience; and Open Data and Reproducibility.

New for 2017 is a sold-out “Teen Track,” a two-day curriculum designed to inspire the scientists of tomorrow.  From July 10-11, high school students will learn more about the Python language and how developers solve real world scientific problems using Python and its scientific libraries.

Conference and tutorial registration is open at https://scipy2017.scipy.org.

About the SciPy Conference

SciPy 2017, the sixteenth annual Scientific Computing with Python conference, will be held July 10-16, 2017 in Austin, Texas. SciPy is a community dedicated to the advancement of scientific computing through open source Python software for mathematics, science and engineering. The annual SciPy Conference allows participants from all types of organizations to showcase their latest projects, learn from skilled users and developers and collaborate on code development. For more information or to register, visit https://scipy2017.scipy.org.

About Enthought

Enthought is a global leader in scientific and analytic software, consulting and training solutions serving a customer base comprised of some of the most respected names in the oil and gas, manufacturing, financial services, aerospace, military, government, biotechnology, consumer products and technology industries. The company was founded in 2001 and is headquartered in Austin, Texas, with additional offices in Cambridge, United Kingdom and Pune, India. For more information visit www.enthought.com and connect with Enthought on Twitter, LinkedIn, Google+, Facebook and YouTube.

 

 

Enthought Receives 2017 Product of the Year Award From National Instruments LabVIEW Tools Network

Python Integration Toolkit for LabVIEW recognized for extending LabVIEW connectivity and bringing the power of Python to applications in Test, Measurement and the Industrial Internet of Things (IIoT)

AUSTIN, TX – May 24, 2017 Enthought, a global leader in scientific and analytic computing solutions, was honored this week by National Instruments with the LabVIEW Tools Network Platform Connectivity 2017 Product of the Year Award for its Python Integration Toolkit for LabVIEW.

Python Integration Toolkit for LabVIEWFirst released at NIWeek 2016, the Python Integration Toolkit enables fast, two-way communication between LabVIEW and Python. With seamless access to the Python ecosystem of tools, LabVIEW users are able to do more with their data than ever before. For example, using the Toolkit, a user can acquire data from test and measurement tools with LabVIEW, perform signal processing or apply machine learning algorithms in Python, display it in LabVIEW, then share results using a Python-enabled web dashboard.

Enthought-Python-Integration-Toolkit-for-LabVIEW-Machine-Learning

Click to see the webinar “Using Python and LabVIEW to Rapidly Solve Engineering Problems” to learn more about adding capabilities such as machine learning by extending LabVIEW applications with Python.

“Python is ideally suited for scientists and engineers due to its simple, yet powerful syntax and the availability of an extensive array of open source tools contributed by a user community from industry and R&D,” said Dr. Tim Diller, Director, IIoT Solutions Group at Enthought. “The Python Integration Toolkit for LabVIEW unites the best elements of two major tools in the science and engineering world and we are honored to receive this award.”

Continue reading

Webinar: Python for Data Science: A Tour of Enthought’s Professional Training Course

DataView Python for Data Science Webinar
What: A guided walkthrough and Q&A about Enthought’s technical training course “Python for Data Science and Machine Learning” with VP of Training Solutions, Dr. Michael Connell

Who Should Watch: individuals, team leaders, and learning & development coordinators who are looking to better understand the options to increase professional capabilities in Python for data science and machine learning applications

VIEW


Enthought’s Python for Data Science training course is designed to accelerate the development of skill and confidence in using Python’s core data science tools — including the standard Python language, the fast array programming package NumPy, and the Pandas data analysis package, as well as tools for database access (DBAPI2, SQLAlchemy), machine learning (scikit-learn), and visual exploration (Matplotlib, Seaborn).

In this webinar, we give you the key information and insight you need to evaluate whether Enthought’s Python for Data Science course is the right solution to advance your professional data science skills in Python, including:

  • Who will benefit most from the course
  • A guided tour through the course topics
  • What skills you’ll take away from the course, how the instructional design supports that
  • What the experience is like, and why it is different from other training alternatives (with a sneak peek at actual course materials)
  • What previous course attendees say about the course

VIEW


michael_connell-enthought-vp-trainingPresenter: Dr. Michael Connell, VP, Enthought Training Solutions

Ed.D, Education, Harvard University
M.S., Electrical Engineering and Computer Science, MIT


Considering Moving to Python for Data Science?

Then Enthought’s Python for Data Science training course is definitely for you! This class has been particularly appealing to people who have been using other tools like R or SAS (or even Excel) for their data science work and want to start applying their analytic skills using the Python toolset.  And it’s no wonder — Python has been identified as the most popular coding language for five years in a row for good reason.

One reason for Python’s broad popularity across a range of disciplines is its efficiency and ease-of-use. Many people consider Python more fun to work in than other languages (and we agree!). Another reason for its popularity among data analysts and data scientists in particular is Python’s extensive (and growing) open source library of powerful tools for preparing, visualizing, analyzing, and modeling data.

Python is also an extraordinarily comprehensive toolset – it supports everything from interactive analysis to automation to software engineering to web app development within a single language and plays very well with other languages like C/C++ or FORTRAN so you can continue leveraging your existing code libraries written in those other languages.

Many organizations are moving to Python so they can consolidate all of their technical work streams under a single comprehensive toolset. In the first part of this class we’ll give you the fundamentals you need to switch from another language to Python and then we cover the core tools that will enable you to do in Python what you were doing with other tools, only faster!

Additional Resources

Upcoming Open Python for Data Science Sessions:
Austin, TX, June 12-16, 2017
San Jose, CA, July 17-21, 2017Learn MoreHave a group interested in training? We specialize in group and corporate training. Contact us or call 512.536.1057.
Download Enthought’s Machine Learning with Python’s Scikit-Learn Cheat Sheets
Enthought's Machine Learning with Python Cheat Sheets
Download Enthought’s Pandas Cheat SheetsEnthought's Pandas Cheat Sheets

Webinar: Using Python and LabVIEW Together to Rapidly Solve Engineering Problems

What: Presentation, demo, and Q&A with Collin Draughon, Software Product Manager, National Instruments, and Andrew Collette, Scientific Software Developer, Enthought

View Now  


Engineers and scientists all over the world are using Python and LabVIEW to solve hard problems in manufacturing and test automation, by taking advantage of the vast ecosystem of Python software.  But going from an engineer’s proof-of-concept to a stable, production-ready version of Python, smoothly integrated with LabVIEW, has long been elusive.

In this on-demand webinar and demo, we take a LabVIEW data acquisition app and extend it with Python’s machine learning capabilities, to automatically detect and classify equipment vibration.  Using a modern Python platform and the Python Integration Toolkit for LabVIEW, we show how easy and fast it is to install heavy-hitting Python analysis libraries, take advantage of them from live LabVIEW code, and finally deploy the entire solution, Python included, using LabVIEW Application Builder.


Python_LabVIEW_VI_Diagram

In this webinar, you’ll see how easy it is to solve an engineering problem by using LabVIEW and Python together.

What You’ll Learn:

  • How Python’s machine learning libraries can simplify a hard engineering problem
  • How to extend an existing LabVIEW VI using Python analysis libraries
  • How to quickly bundle Python and LabVIEW code into an installable app

Who Should Watch:

  • Engineers and managers interested in extending LabVIEW with Python’s ecosystem
  • People who need to easily share and deploy software within their organization
  • Current LabVIEW users who are curious what Python brings to the table
  • Current Python users in organizations where LabVIEW is used

How LabVIEW users can benefit from Python:

  • High-level, general purpose programming language ideally suited to the needs of engineers, scientists, and analysts
  • Huge, international user base representing industries such as aerospace, automotive, manufacturing, military and defense, research and development, biotechnology, geoscience, electronics, and many more
  • Tens of thousands of available packages, ranging from advanced 3D visualization frameworks to nonlinear equation solvers
  • Simple, beginner-friendly syntax and fast learning curve

View Now  

Presenters:

Collin Draughon, National Instruments, Software Product Manager Collin Draughon, National Instruments
Software Product Manager
Andrew Collette, Enthought, Scientific Software Developer Andrew Collette, Enthought
Scientific Software Developer
Python Integration Toolkit for LabVIEW core developer

Continue reading

Webinar – Python for Professionals: The Complete Guide to Enthought’s Technical Training Courses

View the Python for Professionals Webinar

What: Presentation and Q&A with Dr. Michael Connell, VP, Enthought Training Solutions
Who Should Watch: Anyone who wants to develop proficiency in Python for scientific, engineering, analytic, quantitative, or data science applications, including team leaders considering Python training for a group, learning and development coordinators supporting technical teams, or individuals who want to develop their Python skills for professional applications

View Recording  


Python is an uniquely flexible language – it can be used for everything from software engineering (writing applications) to web app development, system administration to “scientific computing” — which includes scientific analysis, engineering, modeling, data analysis, data science, and the like.

Unlike some “generalist” providers who teach generic Python to the lowest common denominator across all these roles, Enthought specializes in Python training for professionals in scientific and analytic fields. In fact, that’s our DNA, as we are first and foremost scientists, engineers, and data scientists ourselves, who just happen to use Python to drive our daily data wrangling, modeling, machine learning, numerical analysis, simulation, and more.

If you’re a professional using Python, you’ve probably had the thought, “how can I be better, smarter, and faster in using Python to get my work done?” That’s where Enthought comes in – we know that you don’t just want to learn generic Python syntax, but instead you want to learn the key tools that fit the work you do, you want hard-won expert insights and tips without having to discover them yourself through trial and error, and you want to be able to immediately apply what you learn to your work.

Bottom line: you want results and you want the best value for your invested time and money. These are some of the guiding principles in our approach to training.

In this webinar, we’ll give you the information you need to decide whether Enthought’s Python training is the right solution for your or your team’s unique situation, helping answer questions such as:

  • What kinds of Python training does Enthought offer? Who is it designed for? 
  • Who will benefit most from Enthought’s training (current skill levels, roles, job functions)?
  • What are the key things that make Enthought’s training different from other providers and resources?
  • What are the differences between Enthought’s training courses and who is each one best for?
  • What specific skills will I have after taking an Enthought training course?
  • Will I enjoy the curriculum, the way the information is presented, and the instructor?
  • Why do people choose to train with Enthought? Who has Enthought worked with and what is their feedback?

We’ll also provide a guided tour and insights about our our five primary course offerings to help you understand the fit for you or your team:

View Recording  


michael_connell-enthought-vp-training

Presenter: Dr. Michael Connell, VP, Enthought Training Solutions

Ed.D, Education, Harvard University
M.S., Electrical Engineering and Computer Science, MIT


Continue reading

Webinar: An Exclusive Peek “Under the Hood” of Enthought Training and the Pandas Mastery Workshop

See the webinar

Enthought’s Pandas Mastery Workshop is designed to accelerate the development of skill and confidence with Python’s Pandas data analysis package — in just three days, you’ll look like an old pro! This course was created ground up by our training experts based on insights from the science of human learning, as well as what we’ve learned from over a decade of extensive practical experience of teaching thousands of scientists, engineers, and analysts to use Python effectively in their everyday work.

In this webinar, we’ll give you the key information and insight you need to evaluate whether the Pandas Mastery Workshop is the right solution to advance your data analysis skills in Python, including:

  • Who will benefit most from the course
  • A guided tour through the course topics
  • What skills you’ll take away from the course, how the instructional design supports that
  • What the experience is like, and why it is different from other training alternatives (with a sneak peek at actual course materials)
  • What previous workshop attendees say about the course

See the Webinar


michael_connell-enthought-vp-trainingPresenter: Dr. Michael Connell, VP, Enthought Training Solutions

Ed.D, Education, Harvard University
M.S., Electrical Engineering and Computer Science, MIT


Continue reading

Loading Data Into a Pandas DataFrame: The Hard Way, and The Easy Way

This is the first blog in a series. See the second blog here: Handling Missing Values in Pandas DataFrames: the Hard Way, and the Easy Way

Data exploration, manipulation, and visualization start with loading data, be it from files or from a URL. Pandas has become the go-to library for all things data analysis in Python, but if your intention is to jump straight into data exploration and manipulation, the Canopy Data Import Tool can help, instead of having to learn the details of programming with the Pandas library.

The Data Import Tool leverages the power of Pandas while providing an interactive UI, allowing you to visually explore and experiment with the DataFrame (the Pandas equivalent of a spreadsheet or a SQL table), without having to know the details of the Pandas-specific function calls and arguments. The Data Import Tool keeps track of all of the changes you make (in the form of Python code). That way, when you are done finding the right workflow for your data set, the Tool has a record of the series of actions you performed on the DataFrame, and you can apply them to future data sets for even faster data wrangling in the future.

At the same time, the Tool can help you pick up how to use the Pandas library, while still getting work done. For every action you perform in the graphical interface, the Tool generates the appropriate Pandas/Python code, allowing you to see and relate the tasks to the corresponding Pandas code.

With the Data Import Tool, loading data is as simple as choosing a file or pasting a URL. If a file is chosen, it automatically determines the format of the file, whether or not the file is compressed, and intelligently loads the contents of the file into a Pandas DataFrame. It does so while taking into account various possibilities that often throw a monkey wrench into initial data loading: that the file might contain lines that are comments, it might contain a header row, the values in different columns could be of different types e.g. DateTime or Boolean, and many more possibilities as well.

Importing files or data into Pandas with the Canopy Data Import Tool

The Data Import Tool makes loading data into a Pandas DataFrame as simple as choosing a file or pasting a URL.

A Glimpse into Loading Data into Pandas DataFrames (The Hard Way)

The following 4 “inconvenience” examples show typical problems (and the manual solutions) that might arise if you are writing Pandas code to load data, which are automatically solved by the Data Import Tool, saving you time and frustration, and allowing you to get to the important work of data analysis more quickly.

Continue reading

Webinar: Solving Enterprise Python Deployment Headaches with the New Enthought Deployment Server

See a recording of the webinar:

Built on 15 years of experience of Python packaging and deployment for Fortune 500 companies, the NEW Enthought Deployment Server provides enterprise-grade tools groups and organizations using Python need, including:

  1. Secure, onsite access to a private copy of the proven 450+ package Enthought Python Distribution
  2. Centralized management and control of packages and Python installations
  3. Private repositories for sharing and deployment of proprietary Python packages
  4. Support for the software development workflow with Continuous Integration and development, testing, and production repositories

In this webinar, Enthought’s product team demonstrates the key features of the Enthought Deployment Server and how it can take the pain out of Python deployment and management at your organization.

Who Should Watch this Webinar:

If you answer “yes” to any of the questions below, then you (or someone at your organization) should watch this webinar:

  1. Are you using Python in a high-security environment (firewalled or air gapped)?
  2. Are you concerned about how to manage open source software licenses or compliance management?
  3. Do you need multiple Python environment configurations or do you need to have consistent standardized environments across a group of users?
  4. Are you producing or sharing internal Python packages and spending a lot of effort on distribution?
  5. Do you have a “guru” (or are you the guru?) who spends a lot of time managing Python package builds and / or distribution?

In this webinar, we demonstrate how the Enthought Deployment Server can help your organization address these situations and more.