Category Archives: Sectors

Webinar: An Exclusive Peek “Under the Hood” of Enthought Training and the Pandas Mastery Workshop

See the webinar

Enthought’s Pandas Mastery Workshop is designed to accelerate the development of skill and confidence with Python’s Pandas data analysis package — in just three days, you’ll look like an old pro! This course was created ground up by our training experts based on insights from the science of human learning, as well as what we’ve learned from over a decade of extensive practical experience of teaching thousands of scientists, engineers, and analysts to use Python effectively in their everyday work.

In this webinar, we’ll give you the key information and insight you need to evaluate whether the Pandas Mastery Workshop is the right solution to advance your data analysis skills in Python, including:

  • Who will benefit most from the course
  • A guided tour through the course topics
  • What skills you’ll take away from the course, how the instructional design supports that
  • What the experience is like, and why it is different from other training alternatives (with a sneak peek at actual course materials)
  • What previous workshop attendees say about the course

See the Webinar

michael_connell-enthought-vp-trainingPresenter: Dr. Michael Connell, VP, Enthought Training Solutions

Ed.D, Education, Harvard University
M.S., Electrical Engineering and Computer Science, MIT

Continue reading

Scientists Use Enthought’s Virtual Core Software to Study Asteroid Impact

Chicxulub Impact Crater Expedition Recovers Core to Further Discovery on the Impact on Life and the Historical Dinosaur Extinction

From April to May 2016, a team of international scientists drilled into the site of an asteroid impact, known as the Chicxulub Impact Crater, which occurred 66 million years ago. The crater is buried several hundred meters below the surface in the Yucatán region of Mexico. Until that time, dinosaurs and marine reptiles dominated the world, but the series of catastrophic events that followed the impact caused the extinction of all large animals, leading to the rise of mammals and evolution of mankind. This joint expedition, organized by the International Ocean Discovery Program (IODP) and International Continental Scientific Drilling Program (ICDP) recovered a nearly complete set of rock cores from 506 to 1335 meters below the modern day seafloor.  These cores are now being studied in detail by an international team of scientists to understand the effects of the impact on life and as a case study of how impacts affect planets.

CT Scans of Cores Provide Deeper Insight Into Core Description and Analysis

Before being shipped to Germany (where the onshore science party took place from September to October 2016), the cores were sent to Houston, TX for CT scanning and imaging. The scanning was done at Weatherford Labs, who performed a high resolution dual energy scan on the entire core.  Dual energy scanning utilizes x-rays at two different energy levels. This provides the information necessary to calculate the bulk density and effective atomic numbers of the core. Enthought processed the raw CT data, and provided cleaned CT data along with density and effective atomic number images.  The expedition scientists were able to use these images to assist with core description and analysis.

CT Scans of Chicxulub Crater Core Samples

Digital images of the CT scans of the recovered core are displayed side by side with the physical cores for analysis


Information not evident in physical observation (bottom, core photograph) can be observed in CT scans (top)

These images are helping scientists understand the processes that occurred during the impact, how the rock was damaged, and how the properties of the rock were affected.  From analysis of images, well log data and laboratory tests it appears that the impact had a permanent effect on rock properties such as density, and the shattered granite in the core is yielding new insights into the mechanics of large impacts.

Virtual Core Provides Co-Visualization of CT Data with Well Log Data, Borehole Images, and Line Scan Photographs for Detailed Interrogation

Enthought’s Virtual Core software was used by the expedition scientists to integrate the CT data along with well log data, borehole images and line scan photographs.  This gave the scientists access to high resolution 2D and 3D images of the core, and allowed them to quickly interrogate regions in more detail when questions arose. Virtual Core also provides machine learning feature detection intelligence and visualization capabilities for detailed insight into the composition and structure of the core, which has proved to be a valuable tool both during the onshore science party and ongoing studies of the Chicxulub core.


Enthought’s Virtual Core software was used by the expedition scientists to visualize the CT data alongside well log data, borehole images and line scan photographs.

Related Articles

Drilling to Doomsday
Discover Magazine, October 27, 2016

Chicxulub ‘dinosaur crater’ investigation begins in earnest
BBC News, October 11, 2016

How CT scans help Chicxulub Crater scientists
Integrated Ocean Drilling Program (IODP) Chicxulub Impact Crater Expedition Blog, October 3, 2016

Chicxulub ‘dinosaur’ crater drill project declared a success
BBC Science, May 25, 2016

Scientists hit pay dirt in drilling of dinosaur-killing impact crater
Science Magazine, May 3, 2016

Scientists gear up to drill into ‘ground zero’ of the impact that killed the dinosaurs
Science Magazine, March 3, 2016

Texas scientists probe crater they think led to dinosaur doomsday
Austin American-Statesman, June 2, 2016

Geophysical Tutorial: Facies Classification using Machine Learning and Python

Published in the October 2016 edition of The Leading Edge magazine by the Society of Exploration Geophysicists. Read the full article here.

By Brendon Hall, Enthought Geosciences Applications Engineer 
Coordinated by Matt Hall, Agile Geoscience


There has been much excitement recently about big data and the dire need for data scientists who possess the ability to extract meaning from it. Geoscientists, meanwhile, have been doing science with voluminous data for years, without needing to brag about how big it is. But now that large, complex data sets are widely available, there has been a proliferation of tools and techniques for analyzing them. Many free and open-source packages now exist that provide powerful additions to the geoscientist’s toolbox, much of which used to be only available in proprietary (and expensive) software platforms.

One of the best examples is scikit-learn, a collection of tools for machine learning in Python. What is machine learning? You can think of it as a set of data-analysis methods that includes classification, clustering, and regression. These algorithms can be used to discover features and trends within the data without being explicitly programmed, in essence learning from the data itself.

Well logs and facies classification results from a single well.

Well logs and facies classification results from a single well.

In this tutorial, we will demonstrate how to use a classification algorithm known as a support vector machine to identify lithofacies based on well-log measurements. A support vector machine (or SVM) is a type of supervised-learning algorithm, which needs to be supplied with training data to learn the relationships between the measurements (or features) and the classes to be assigned. In our case, the features will be well-log data from nine gas wells. These wells have already had lithofacies classes assigned based on core descriptions. Once we have trained a classifier, we will use it to assign facies to wells that have not been described.

See the tutorial in The Leading Edge here.


Webinar: Introducing the NEW Python Integration Toolkit for LabVIEW

See a recording of the webinar:

LabVIEW is a software platform made by National Instruments, used widely in industries such as semiconductors, telecommunications, aerospace, manufacturing, electronics, and automotive for test and measurement applications. In August 2016, Enthought released the Python Integration Toolkit for LabVIEW, which is a “bridge” between the LabVIEW and Python environments.

In this webinar, we’ll demonstrate:

  1. How the new Python Integration Toolkit for LabVIEW from Enthought seamlessly brings the power of the Python ecosystem of scientific and engineering tools to LabVIEW
  2. Examples of how you can extend LabVIEW with Python, including using Python for signal and image processing, cloud computing, web dashboards, machine learning, and more

Continue reading

AAPG 2016 Conference Technical Presentation: Unlocking Whole Core CT Data for Advanced Description and Analysis

Microscale Imaging for Unconventional Plays Track Technical Presentation:

Unlocking Whole Core CT Data for Advanced Description and Analysis

Brendon Hall, Geoscience Applications Engineer, EnthoughtAmerican Association of Petroleum Geophysicists (AAPG)
2016 Annual Convention and Exposition Technical Presentation
Tuesday June 21st at 4:15 PM, Hall B, Room 2, BMO Centre, Calgary

Presented by: Brendon Hall, Geoscience Applications Engineer, Enthought, and Andrew Govert, Geologist, Cimarex Energy


It has become an industry standard for whole-core X-ray computed tomography (CT) scans to be collected over cored intervals. The resulting data is typically presented as static 2D images, video scans, and as 1D density curves.

CT scan of core pre- and post-processing

CT scans of cores before and after processing to remove artifacts and normalize features.

However, the CT volume is a rich data set of compositional and textural information that can be incorporated into core description and analysis workflows. In order to access this information the raw CT data initially has to be processed to remove artifacts such as the aluminum tubing, wax casing and mud filtrate. CT scanning effects such as beam hardening are also accounted for. The resulting data is combined into contiguous volume of CT intensity values which can be directly calibrated to plug bulk density.

Continue reading

Just Released: PyXLL v 3.0 (Python in Excel). New Real Time Data Stream Capabilities, Excel Ribbon Integration, and More.

Download a free 30 day trial of PyXLL and try it with your own data.

Since PyXLL was first released back in 2010 it has grown hugely in popularity and is used by businesses in many different sectors.

The original motivation for PyXLL was to be able to use all the best bits of Excel combined with a modern programming language for scientific computing, in a way that fits naturally and works seamlessly.

Since the beginning, PyXLL development focused on the things that really matter for creating useful real-world spreadsheets; worksheet functions and macro functions. Without these all you can do is just drive Excel by poking numbers in and reading numbers out. At the time the first version of PyXLL was released, that was already possibly using COM, and so providing yet another API to do the same was seen as little value add. On the other hand, being able to write functions and macros in Python opens up possibilities that previously were only available in VBA or writing complicated Excel Addins in C++ or C#.

With the release of PyXLL 3, integrating your Python code into Excel has become more enjoyable than ever. Many things have been simplified to get you up and running faster, and there are some major new features to explore.

  • If you are new to PyXLL have a look at the Getting Started section of the documentation.
  • All the features of PyXLL, including these new ones, can be found in the Documentation


1. Ribbon Customization

Screen Shot 2016-02-29 at 15.57.12

Ever wanted to write an add-in that uses the Excel ribbon interface? Previously the only way to do this was to write a COM add-in, which requires a lot of knowledge, skill and perseverance! Now you can do it with PyXLL by defining your ribbon as an XML document and adding it to your PyXLL config. All the callbacks between Excel and your Python code are handled for you.

Continue reading

The Latest Features in Virtual Core: CT Scan, Photo, and Well Log Co-visualization

Enthought is pleased to announce Virtual Core 1.8.  Virtual Core automates aspects of core description for geologists, drastically reducing the time and effort required for core description, and its unified visualization interface displays cleansed whole-core CT data alongside core photographs and well logs.  It provides tools for geoscientists to analyze core data and extract features from sub-millimeter scale to the entire core.

NEW VIRTUAL CORE 1.8 FEATURE: Rotational Alignment on Core CT Sections

Virtual Core 1.8 introduces the ability to perform rotational alignment on core CT sections.  Core sections can become misaligned during extraction and data acquisition.   The alignment tool allows manual realignment of the individual core sections.  Wellbore image logs (like FMI) can be imported and used as a reference when aligning core sections.  The Digital Log Interchange Standard (DLIS) is now fully supported, and can be used to import and export data.

Whole-core CT scans are routinely performed on extracted well cores.  The data produced from these scans is typically presented as static 2D images of cross sections and video scans.  Images are limited to those provided by the vendor, and the raw data, if supplied, is difficult to analyze. However, the CT volume is a rich 3D dataset of compositional and textural information that can be incorporated into core description and analysis workflows.

Enthought’s proprietary Clear Core technology is used to process the raw CT data, which is notoriously difficult to analyze.  Raw CT data is stored in 3 foot sections, with each section consisting of many thousands of individual slice images which are approximately .2 mm thick. Continue reading

Canopy Geoscience: Python-Based Analysis Environment for Geoscience Data

Today we officially release Canopy Geoscience 0.10.0, our Python-based analysis environment for geoscience data.

Canopy Geoscience integrates data I/O, visualization, and programming, in an easy-to-use environment. Canopy Geoscience is tightly integrated with Enthought Canopy’s Python distribution, giving you access to hundreds of high-performance scientific libraries to extract information from your data.

The Canopy Geoscience environment allows easy exploration of your data in 2D or 3D. The data is accessible from the embedded Python environment, and can be analyzed, modified, and immediately visualized with simple Python commands.

Feature and capability highlights for Canopy Geoscience version 0.10.0 include:

  • Read and write common geoscience data formats (LAS, SEG-Y, Eclipse, …)
  • 3D and 2D visualization tools
  • Well log visualization
  • Conversion from depth to time domain is integrated in the visualization tools using flexible depth-time models
  • Integrated IPython shell to programmatically access and analyse the data
  • Integrated with the Canopy editor for scripting
  • Extensible with custom-made plugins to fit your personal workflow

Contact us to learn more about Canopy Geoscience! Continue reading