The Latest Features in Virtual Core: CT Scan, Photo, and Well Log Co-visualization

Enthought is pleased to announce Virtual Core 1.8.  Virtual Core automates aspects of core description for geologists, drastically reducing the time and effort required for core description, and its unified visualization interface displays cleansed whole-core CT data alongside core photographs and well logs.  It provides tools for geoscientists to analyze core data and extract features from sub-millimeter scale to the entire core.

NEW VIRTUAL CORE 1.8 FEATURE: Rotational Alignment on Core CT Sections

Virtual Core 1.8 introduces the ability to perform rotational alignment on core CT sections.  Core sections can become misaligned during extraction and data acquisition.   The alignment tool allows manual realignment of the individual core sections.  Wellbore image logs (like FMI) can be imported and used as a reference when aligning core sections.  The Digital Log Interchange Standard (DLIS) is now fully supported, and can be used to import and export data.

Whole-core CT scans are routinely performed on extracted well cores.  The data produced from these scans is typically presented as static 2D images of cross sections and video scans.  Images are limited to those provided by the vendor, and the raw data, if supplied, is difficult to analyze. However, the CT volume is a rich 3D dataset of compositional and textural information that can be incorporated into core description and analysis workflows.

Enthought’s proprietary Clear Core technology is used to process the raw CT data, which is notoriously difficult to analyze.  Raw CT data is stored in 3 foot sections, with each section consisting of many thousands of individual slice images which are approximately .2 mm thick. Continue reading

Canopy Geoscience: Python-Based Analysis Environment for Geoscience Data

Today we officially release Canopy Geoscience 0.10.0, our Python-based analysis environment for geoscience data.

Canopy Geoscience integrates data I/O, visualization, and programming, in an easy-to-use environment. Canopy Geoscience is tightly integrated with Enthought Canopy’s Python distribution, giving you access to hundreds of high-performance scientific libraries to extract information from your data.

The Canopy Geoscience environment allows easy exploration of your data in 2D or 3D. The data is accessible from the embedded Python environment, and can be analyzed, modified, and immediately visualized with simple Python commands.

Feature and capability highlights for Canopy Geoscience version 0.10.0 include:

  • Read and write common geoscience data formats (LAS, SEG-Y, Eclipse, …)
  • 3D and 2D visualization tools
  • Well log visualization
  • Conversion from depth to time domain is integrated in the visualization tools using flexible depth-time models
  • Integrated IPython shell to programmatically access and analyse the data
  • Integrated with the Canopy editor for scripting
  • Extensible with custom-made plugins to fit your personal workflow

Contact us to learn more about Canopy Geoscience! Continue reading

Plotting in Excel with PyXLL and Matplotlib

Author: Tony Roberts, creator of PyXLL, a Python library that makes it possible to write add-ins for Microsoft Excel in Python. Download a FREE 30 day trial of PyXLL here.

Plotting in Excel with PyXLL and MatplotlibPython has a broad range of tools for data analysis and visualization. While Excel is able to produce various types of plots, sometimes it’s either not quite good enough or it’s just preferable to use matplotlib.

Users already familiar with matplotlib will be aware that when showing a plot as part of a Python script the script stops while a plot is shown and continues once the user has closed it. When doing the same in an IPython console when a plot is shown control returns to the IPython prompt immediately, which is useful for interactive development.

Something that has been asked a couple of times is how to use matplotlib within Excel using PyXLL. As matplotlib is just a Python package like any other it can be imported and used in the same way as from any Python script. The difficulty is that when showing a plot the call to matplotlib blocks and so control isn’t returned to Excel until the user closes the window.

This blog shows how to plot data from Excel using matplotlib and PyXLL so that Excel can continue to be used while a plot window is active, and so that same window can be updated whenever the data in Excel is updated. Continue reading

Enthought’s Prabhu Ramachandran Announced as Winner of Kenneth Gonsalves Award 2014 at PyCon India

From PyCon India: Published / 25 Sep 2014

PSSI [Python Software Society of India] is happy to announce that Prabhu Ramachandran, faculty member of Department of Aerospace Engineering, IIT Bombay [and managing director of Enthought India] is the winner of Kenneth Gonsalves Award, 2014.

Enthought's Prabhu Ramachandran, winner of Kenneth Gonsalves Award 2014

Prabhu has been active in the Open source and Python community for close to 15 years. He co-founded the Chennai LUG in 1998. He is also well known as the author and lead developer of the award winning Mayavi and TVTK Python packages. He also maintains PySPH, an open source framework for Smoothed Particle Hydrodynamics (SPH) simulations.

Prabhu is also Member of Board, Python Software Foundation since 2010 and is closely involved with the activities of FOSSEE and SciPy India. His research interests are primarily in particle methods and applied scientific computing.

Prabhu will be presented the Award on 27th Sep, the opening day of PyCon India 2014. PSSI and Team PyCon India would like to extend their hearty Congratulations to Prabhu for his achievement and wish him the very best for his future endeavours.


Congratulations Prabu, we’re honored to have you as part of the Enthought team!

Webinar: Work Better, Smarter, and Faster in Python with Enthought Training on Demand

Join Us For a Webinar

Enthought Training on Demand Webinar

We’ll demonstrate how Enthought Training on Demand can help both new Python users and experienced Python developers be better, smarter, and faster at the scientific and analytic computing tasks that directly impact their daily productivity and drive results.

View a recording of the Work Better, Smarter, and Faster in Python with Enthought Training on Demand webinar here.

What You’ll Learn

Continue reading

The Latest and Greatest Pandas Features (since v 0.11)

On May 28, 2014 Phillip Cloud, core contributor for the Pandas data analytics Python library, spoke at a joint meetup of the New York Quantitative Python User’s Group (NY QPUG) and the NY Finance PUG. Enthought hosted and about 60 people joined us to listen to Phillip present some of the less-well-known, but really useful features that have come out since Pandas version 0.11 and some that are coming soon. We all learned more about how to take full advantage of the Pandas Python library, and got a better sense of how excited Phillip was to discover Pandas during his graduate work.

Pandas to MATLAB

After a fairly comprehensive overview of Pandas, Phillip got into the new features. In version 0.11 he covered: Continue reading

Enthought Canopy 1.4 Released: Includes New Canopy-Configured Command Prompt

Enthought Canopy Product Page | Download Enthought Canopy

Enthought Canopy Update AvailableEnthought Canopy 1.4 is now available! Users can easily update to this latest version by clicking on the green “Update available” link at the bottom right of the Canopy intro screen window or by going to Help > Canopy Application Updates within the application.

Key additions in this release are a Canopy-configured command prompt, inclusion of new packages in the full installer utilized by IT groups and users running from disconnected networks, and continued stability upgrades. We’ve also updated or added over 50 supported packages in Canopy’s Package Manager on a continual basis since the v.1.3 release. See the full release notes and the full list of currently available Canopy packages.

New Canopy-Configured Command Prompt

Enthought Canopy Command PromptAn important usability feature added in Enthought Canopy 1.4 is a Canopy-configured command prompt available from the Canopy Editor window on all platforms via Tools > Command Prompt. When selected, this opens a Command Prompt (Windows) or Terminal (Linux, Mac OS) window pre-configured with the correct environment settings to use Canopy’s Python installation from the command line. This avoids having to modify your login environment variables. In particular, on Windows when using standard (ie, non-administrative) user accounts it can be difficult to override some system settings. Continue reading