Tag Archives: Data Wrangling

Using the Canopy Data Import Tool to Speed Cleaning and Transformation of Data & New Release Features

Enthought Canopy Data Import Tool

Download Canopy to try the Data Import Tool

In November 2016, we released Version 1.0.6 of the Data Import Tool (DIT), an addition to the Canopy data analysis environment. With the Data Import Tool, you can quickly import structured data files as Pandas DataFrames, clean and manipulate the data using a graphical interface, and create reusable Python scripts to speed future data wrangling.

For example, the Data Import Tool lets you delete rows and columns containing Null values or replace the Null values in the DataFrame with a specific value. It also allows you to create new columns from existing ones. All operations are logged and are reversible in the Data Import Tool so you can experiment with various workflows with safeguards against errors or forgetting steps. Continue reading

Webinar: Fast Forward Through the “Dirty Work” of Data Analysis: New Python Data Import and Manipulation Tool Makes Short Work of Data Munging Drudgery

Python Import & Manipulation Tool Intro Webinar

Whether you are a data scientist, quantitative analyst, or an engineer, or if you are evaluating consumer purchase behavior, stock portfolios, or design simulation results, your data analysis workflow probably looks a lot like this:

Acquire > Wrangle > Analyze and Model > Share and Refine > Publish

The problem is that often 50 to 80 percent of time is spent wading through the tedium of the first two stepsacquiring and wrangling data – before even getting to the real work of analysis and insight. (See The New York Times, For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights)

WHAT YOU’LL LEARN:

Enthought Canopy Data Import Tool

Try the Data Import Tool with your own data. Download here.

In this webinar we’ll demonstrate how the new Canopy Data Import Tool can significantly reduce the time you spend on data analysis “dirty work,” by helping you:

  • Load various data file types and URLs containing embedded tables into Pandas DataFrames
  • Perform common data munging tasks that improve raw data
  • Handle complicated and/or messy data
  • Extend the work done with the tool to other data files

WEBINAR RECORDING:
Continue reading