Tag Archives: MATLAB

Webinar: Python for MATLAB Users: What You Need To Know

What:  A guided walkthrough and Q&A about how to migrate from MATLAB® to Python with Enthought Lead Instructor, Dr. Alexandre Chabot-Leclerc.

Who Should Watch: MATLAB® users who are considering migrating to Python, either partially or completely.


Python has a lot of momentum. Many high profile projects use it and more are migrating to it all the time. Why? One reason is that Python is free, but more importantly, it is because Python has a thriving ecosystem of packages that allow developers to work faster and more efficiently. They can go from prototyping to production to scale on hardware ranging from a Raspberry Pi (or maybe micro controller) to a cluster, all using the same language. A large part of Python’s growth is driven by its excellent support for work in the fields of science, engineering, machine learning, and data science.

You and your organization might be thinking about migrating from MATLAB to Python to get access to the ecosystem and increase your productivity, but you might also have some outstanding questions and concerns, such as: How do I get started? Will any of my knowledge transfer? How different are Python and MATLAB? How long will it take me to become proficient? Is it too big a of a shift? Can I transition gradually or do I have to do it all at once? These are all excellent questions.

We know people put a lot of thought into the tools they select and that changing platforms is a big deal. We created this webinar to help you make the right choice.

In this webinar, we’ll give you the key information and insight you need to quickly evaluate whether Python is the right choice for you, your team, and your organization, including:

  • How to get started
  • What you need in order to replicate the MATLAB experience
  • Important conceptual differences between MATLAB and Python
  • Important similarities between MATLAB and Python: What MATLAB knowledge will transfer
  • Strategies for converting existing MATLAB code to Python
  • How to accelerate your transition


Presenter: Dr. Alexandre Chabot-Leclerc, Enthought Lead Instructor

Ph.D, Electrical Engineering, Technical University of Denmark


Python for Scientists & Engineers Training: The Quick Start Approach to Turbocharging Your Work

If you are tired of running repeatable processes manually and want to (semi-) automate them to increase your throughput and decrease pilot error, or you want to spend less time debugging code and more time writing clean code in the first place, or you are simply tired of using a multitude of tools and languages for different parts of a task and want to replace them with one comprehensive language, then Enthought’s Python for Scientists and Engineers is definitely for you!

This class has been particularly appealing to people who have been using other tools like MATLAB or even Excel for their computational work and want to start applying their skills using the Python toolset.  And it’s no wonder — Python has been identified as the most popular coding language for five years in a row for good reason.

One reason for its broad popularity is its efficiency and ease-of-use. Many people consider Python more fun to work in than other languages (and we agree!). Another reason for its popularity among scientists, engineers, and analysts in particular is Python’s support for rapid application development and extensive (and growing) open source library of powerful tools for preparing, visualizing, analyzing, and modeling data as well as simulation.

Python is also an extraordinarily comprehensive toolset – it supports everything from interactive analysis to automation to software engineering to web app development within a single language and plays very well with other languages like C/C++ or FORTRAN so you can continue leveraging your existing code libraries written in those other languages.

Many organizations are moving to Python so they can consolidate all of their technical work streams under a single comprehensive toolset. In the first part of this class we’ll give you the fundamentals you need to switch from another language to Python and then we cover the core tools that will enable you to do in Python what you were doing with other tools, only faster and better!

Additional Resources

Upcoming Open Python for Scientists & Engineers Sessions:

Washington, DC, Sept 25-29
Los Alamos, NM, Oct 2-6, 2017
Cambridge, UK, Oct 16-20, 2017
San Diego, CA, Oct 30-Nov 3, 2017
Albuquerque, NM, Nov 13-17, 2017
Los Alamos, NM, Dec 4-8, 2017
Austin, TX, Dec 11-15, 2017

Have a group interested in training? We specialize in group and corporate training. Contact us or call 512.536.1057.

Learn More

Download Enthought’s MATLAB to Python White Paper

Additional Webinars in the Training Series:

Python for Scientists & Engineers: A Tour of Enthought’s Professional Technical Training Course

Python for Data Science: A Tour of Enthought’s Professional Technical Training Course

Python for Professionals: The Complete Guide to Enthought’s Technical Training Courses

An Exclusive Peek “Under the Hood” of Enthought Training and the Pandas Mastery Workshop

Download Enthought’s Machine Learning with Python’s Scikit-Learn Cheat SheetsEnthought's Machine Learning with Python Cheat Sheets

Enthought Announces Canopy 2.1: A Major Milestone Release for the Python Analysis Environment and Package Distribution

Python 3 and multi-environment support, new state of the art package dependency solver, and over 450 packages now available free for all users

Enthought Canopy logoEnthought is pleased to announce the release of Canopy 2.1, a significant feature release that includes Python 3 and multi-environment support, a new state of the art package dependency solver, and access to over 450 pre-built and tested scientific and analytic Python packages completely free for all users. We highly recommend that all current Canopy users upgrade to this new release.

Ready to dive in? Download Canopy 2.1 here.

For those currently familiar with Canopy, in this blog we’ll review the major new features in this exciting milestone release, and for those of you looking for a tool to improve your workflow with Python, or perhaps new to Python from a language like MATLAB or R, we’ll take you through the key reasons that scientists, engineers, data scientists, and analysts use Canopy to enable their work in Python.

First, let’s talk about the latest and greatest in Canopy 2.1!

  1. Support for Python 3 user environments: Canopy can now be installed with a Python 3.5 user environment. Users can benefit from all the Canopy features already available for Python 2.7 (syntax checking, debugging, etc.) in the new Python 3 environments. Python 3.6 is also available (and will be the standard Python 3 in Canopy 2.2).
  2. All 450+ Python 2 and Python 3 packages are now completely free for all users: Technical support, full installers with all packages for offline or shared installation, and the premium analysis environment features (graphical debugger and variable browser and Data Import Tool) remain subscriber-exclusive benefits. See subscription options here to take advantage of those benefits.
  3. Built in, state of the art dependency solver (EDM or Enthought Deployment Manager): the new EDM back end (which replaces the previous enpkg) provides additional features for robust package compatibility. EDM integrates a specialized dependency solver which automatically ensures you have a consistent package set after installation, removal, or upgrade of any packages.
  4. Environment bundles, which allow users to easily share environments directly with co-workers, or across various deployment solutions (such as the Enthought Deployment Server, continuous integration processes like Travis-CI and Appveyor, cloud solutions like AWS or Google Compute Engine, or deployment tools like Ansible or Docker). EDM environment bundles not only allow the user to replicate the set of installed dependencies but also support persistence for constraint modifiers, the list of manually installed packages, and the runtime version and implementation. Continue reading

“Why We Built Enthought Canopy, An Inside Look” Recorded Webinar

We posted a recording of a 30 minute webinar that we did on the 20th that covers what Canopy is and why we developed it. There’s a few minutes of Brett Murphy(Product Manager at Enthought) discussing the “why” with some slides, and then Jason McCampbell (Development Manager for Canopy) gets into the interesting part with a 15+ minute demo of some of the key capabilities and workflows in Canopy. If you would like to watch the recorded webinar, you can find it here (the different formats will play directly in different browsers so check them and you won’t have to download the whole recording first):

Summed up in one line: Canopy provides the minimal set of tools for non-programmers to access, analyze and visualize data in an open-source Python environment.

The challenge in the past for scientists, engineers and analysts who wanted to use Python had been pulling together a working, integrated Python environment for scientific computing. Finding compatible versions of the dozens of Python packages, compiling them and integrating it all was very time consuming. That’s why we released the Enthought Python Distribution (EPD) many years back. It provided a single install of all the major packages you needed to do scientific and analytic computing with Python.

But the primary interface for a user of EPD was the command line. For a scientist or analyst used to an environment like MATLAB or one of the R IDEs, the command line is a little unapproachable and makes Python challenging to adopt. This is why we developed Canopy.

Enthought Canopy is both a Python distribution (like EPD) and an analysis environment. The analysis environment includes an integrated editor and IPython prompt to faciliate script development & testing and data analysis & plotting. The graphical package manager becomes the main interface to the Python ecosystem with its package search, install and update capabilities. And the documentation browser makes online documentation for Canopy, Python and the popular Python packages available on the desktop.

Check out the Canopy demo in the recorded webinar (link above). We hope it’s helpful.