Tag Archives: Python

Geophysical Tutorial: Facies Classification using Machine Learning and Python

Published in the October 2016 edition of The Leading Edge magazine by the Society of Exploration Geophysicists. Read the full article here.

By Brendon Hall, Enthought Geosciences Applications Engineer 
Coordinated by Matt Hall, Agile Geoscience


There has been much excitement recently about big data and the dire need for data scientists who possess the ability to extract meaning from it. Geoscientists, meanwhile, have been doing science with voluminous data for years, without needing to brag about how big it is. But now that large, complex data sets are widely available, there has been a proliferation of tools and techniques for analyzing them. Many free and open-source packages now exist that provide powerful additions to the geoscientist’s toolbox, much of which used to be only available in proprietary (and expensive) software platforms.

One of the best examples is scikit-learn, a collection of tools for machine learning in Python. What is machine learning? You can think of it as a set of data-analysis methods that includes classification, clustering, and regression. These algorithms can be used to discover features and trends within the data without being explicitly programmed, in essence learning from the data itself.

Well logs and facies classification results from a single well.

Well logs and facies classification results from a single well.

In this tutorial, we will demonstrate how to use a classification algorithm known as a support vector machine to identify lithofacies based on well-log measurements. A support vector machine (or SVM) is a type of supervised-learning algorithm, which needs to be supplied with training data to learn the relationships between the measurements (or features) and the classes to be assigned. In our case, the features will be well-log data from nine gas wells. These wells have already had lithofacies classes assigned based on core descriptions. Once we have trained a classifier, we will use it to assign facies to wells that have not been described.

See the tutorial in The Leading Edge here.


Webinar: Introducing the NEW Python Integration Toolkit for LabVIEW

See a recording of the webinar:

LabVIEW is a software platform made by National Instruments, used widely in industries such as semiconductors, telecommunications, aerospace, manufacturing, electronics, and automotive for test and measurement applications. In August 2016, Enthought released the Python Integration Toolkit for LabVIEW, which is a “bridge” between the LabVIEW and Python environments.

In this webinar, we’ll demonstrate:

  1. How the new Python Integration Toolkit for LabVIEW from Enthought seamlessly brings the power of the Python ecosystem of scientific and engineering tools to LabVIEW
  2. Examples of how you can extend LabVIEW with Python, including using Python for signal and image processing, cloud computing, web dashboards, machine learning, and more

Continue reading

Webinar: Fast Forward Through the “Dirty Work” of Data Analysis: New Python Data Import and Manipulation Tool Makes Short Work of Data Munging Drudgery

Python Import & Manipulation Tool Intro Webinar

Whether you are a data scientist, quantitative analyst, or an engineer, or if you are evaluating consumer purchase behavior, stock portfolios, or design simulation results, your data analysis workflow probably looks a lot like this:

Acquire > Wrangle > Analyze and Model > Share and Refine > Publish

The problem is that often 50 to 80 percent of time is spent wading through the tedium of the first two stepsacquiring and wrangling data – before even getting to the real work of analysis and insight. (See The New York Times, For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights)


Enthought Canopy Data Import Tool

Try the Data Import Tool with your own data. Download here.

In this webinar we’ll demonstrate how the new Canopy Data Import Tool can significantly reduce the time you spend on data analysis “dirty work,” by helping you:

  • Load various data file types and URLs containing embedded tables into Pandas DataFrames
  • Perform common data munging tasks that improve raw data
  • Handle complicated and/or messy data
  • Extend the work done with the tool to other data files

Continue reading