Tag Archives: Data Science

Webinar: Python for Data Science: A Tour of Enthought’s Professional Training Course

View Python for Data Science Webinar
What: A guided walkthrough and Q&A about Enthought’s technical training course “Python for Data Science and Machine Learning” with VP of Training Solutions, Dr. Michael Connell

Who Should Watch: individuals, team leaders, and learning & development coordinators who are looking to better understand the options to increase professional capabilities in Python for data science and machine learning applications

VIEW


Enthought’s Python for Data Science training course is designed to accelerate the development of skill and confidence in using Python’s core data science tools — including the standard Python language, the fast array programming package NumPy, and the Pandas data analysis package, as well as tools for database access (DBAPI2, SQLAlchemy), machine learning (scikit-learn), and visual exploration (Matplotlib, Seaborn).

Continue reading

Handling Missing Values in Pandas DataFrames: the Hard Way, and the Easy Way

The Data Import Tool can highlight missing value cells, helping you easily identify columns or rows containing NaN valuesThis is the second blog in a series. See the first blog here: Loading Data Into a Pandas DataFrame: The Hard Way, and The Easy Way

No dataset is perfect and most datasets that we have to deal with on a day-to-day basis have values missing, often represented by “NA” or “NaN”. One of the reasons why the Pandas library is as popular as it is in the data science community is because of its capabilities in handling data that contains NaN values.

Continue reading